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Diffraction patterns taken from cubic silicon carbide crystals partially transformed to a 6H 
(ABCACB . . . .  ) structure show the presence of characteristic diffuse streaks parallel to r 
suggesting that the transformation takes place by statistical insertion of stacking faults. Theory 
of diffraction for cubic crystals undergoing transformation to the 6H structure by non-random 
insertion of deformation and layer displacement faults is developed separately. It is shown that 
a choice between the two routes of transformation can be made by comparing the theoreti- 
cally predicted diffraction effects with those experimentally observed. Using such a diffraction 
approach, it is concluded that the transformation takes place by a non-random insertion of 
layer displacement faults. It is also shown that the observed diffraction characteristics cannot 
be explained in terms of non-random twinning through growth faults. 

1. I n t r o d u c t i o n  
Since the early study of Baumann [1], several workers 
have investigated the/3 ~ e or 3C to 6H transform- 
ation in SiC. Recently, Pandey [2] has reviewed these 
investigations. In all these studies it is not clear 
whether the transformation occurred in the solid state 
or via the vapour phase. The first conclusive evidence 
in favour of a solid state transformation between the 3C 
and 6H structures of SiC was reported by Jagodzinski 
[3] who studied the transformation behaviour of 
twinned 3C-SiC crystals above 1600 ~ C. It was found 
that the transformation commences with a statistical 
insertion of stacking faults giving rise to continuous 
diffuse streaks on X-ray diffraction photographs 
[3, 4]. Further, the final 6H structure is invariably 
disordered suggesting arrest of the transformation. 

During the last decade, transmission electron 
microscope techniques have been extensively used to 
study the development of microstructures and the 
nature of the 3C/6H interface corresponding to the 
intermediate states of/? ~ e transformation in con- 
ventionally sintered, hot-pressed and reaction-sintered 
SiC polycrystalline samples. These investigations 
have been reviewed by Jepps and Page [5]. In the 
early stages of the transformation the e-phase mor- 
phology is a plate, having well-defined orientation 
relationship with the fl matrix, {111}8 [I (0001)~ and 
[110]8 [[ [1120]~. In the second stage of transformation, 
especially in fine-grained specimens, lengthening of e- 
plates occurs through a coupling with grain-boundary 
migration involving local recrystallization of the sur- 
rounding fl-grains [6-9]. This results in the formation 
of e-plates sandwiched by sheaths of fi-phase material. 
Clarke [10], who also studied the morphology of the 
e-phase as well as the nature of the transformation 
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interface in reaction-sintered SiC, did not, however, 
observe any extension of e-plates across the/~-grains. 

It has been reported [7, 8, 11, 12] that the {1 1 1} 
twin interfaces of the cubic matrix provide nuclei of 
6H for the initiation of the transformation which is in 
conformity with the X-ray observation [13] that 
untwinned 3C crystals do not undergo any trans- 
formation on annealing. The transformation proceeds 
further by the nucleation of stacking faults and their 
propagation by the advancement of unit-cell-high 
steps of 6H perpendicular to the 3C/6H habit plane 
[10-16]. According to Ogbuji et al. [15], the growth of 
e-SiC nuclei takes place by repeated nucleation and 
propagation of Shockley partials which are known to 
border deformation faults (for notations on stacking 
faults, see Pandey [17]). The 3C to 6H transformation 
by such a deformation mechanism is shown below 
schematically. 

Initial structure (3C): 

A B C A B C A B  C A . . .  

C A B C A B  . . .  

B C A B C . . .  

A B C A . . .  
Resulting structure (6H): 

A B C A C B, A B C A . . . ,  

where vertical bars indicate the planes across which 
the crystal parts have slipped past each other through 
a partial slip vector of the form (a/3)~l 0T0). The 
desired Shockley partials bordering deformation 
faults may either be supplied by sub-grain boundaries, 
as envisaged by Ogbuji et al. [15], or may result from 
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splitting of perfect dislocations. The deformation 
faults may also be nucleated by thermal or mechanical 
stresses. Once deformation faults have nucleated at 
correct layer positions so as to give rise to a 6H 
structure, their expansion above the transformation 
temperature is ensured by virtue of the negative stack- 
ing fault energy. 

Using tilted beam crossed lattice imaging, Jepps and 
Page [12] have resolved the layer-by-layer stacking 
sequences in a range of samples of 3C-SiC partially 
transformed to 6H by high-temperature annealing. 
They have reported observation of three-layer thick 
twins in partially transformed 3C-SiC samples. The 
fact that these twins are always three layers thick 
implies that they are created as part of a unit process 
involving the displacement of a pair of layers as 
envisaged in the geometry 
fault defined below: 

Initial 3C structure: . . . A 

Faul ted 3C structure: . . . A 

of a layer displacement 

B C A ~ A B C ' ' "  

B C A  B C  

where two layers indicated by the rectangle, have 
transposed their orientation and thereby constitute a 
stacking fault. A single layer displacement fault gives 
rise to three layers (ACB) in twin orientation. Jepps 
and Page have also reported [14] little discernible 
strain contrast at the ends of the unit-cell-high steps of 
6H in their tilted beam crossed lattice images of the 
incoherent 3C/6H interface. They have therefore 
suggested that the advancement of unit-cell-high steps 
at the 3C/6H incoherent interface takes place via local 
diffusional rearrangement of atoms in the 3C structure 
[5]. Any such local diffusional rearrangement of atoms 
in the 3C structure requires that a pair of layers be 
transposed since the displacement of only one layer 
sandwiched between two crystal halves will lead to a 
violation of stacking sequence principle. Geometrically 
it is also possible to visualize the formation of a layer 
displacement fault as a unit process by simultaneous 
nucleation and propagation of three Shockley partials 
on three successive planes. While the occurrence of 
three Shockley partials as a unit process seems to be 
farfetched, this process is distinct from the successive 
nucleation and propagation of Shockley partials 
envisaged in deformation mechanism. Unlike the defor- 
mation fault, which is an intrinsic fault the layer 
displacement fault is of extrinsic type in the sense 
defined by Frank [18]. This is because the faulted pair 
of layers do not belong to the regular structure on 
either side of the pair (see Pandey [17] for details). The 
suggestion of Jepps and Page [14] thus corresponds to 
3C to 6H transformation by a layer displacement 
mechanism involving transposition of the orientation 
of a pair of layers after every four layers in accordance 
with the following scheme: 

Initial 3C structure: . . . A B C A ~ A B C A ~ A . . .  

Final 6H structure: A B C A A B C A 

The present investigation was undertaken to study 
the mechanism of 3C to 6H transformation in SiC 
using a diffraction approach developed earlier by 
Pandey et al. [19-21] to elucidate the mechanism of 

2H to 6H transformation in SiC. It is shown that a 
choice between the deformation and layer displace- 
ment mechanisms can be made from a careful analysis 
of the continuous intensity distribution along the 
streaked reciprocal lattice rows on diffraction pat- 
terns corresponding to the intermediate states of 
transformation. To do this we have developed the 
theory of diffraction from crystals undergoing 3C to 
6H transformation through non-random insertions of 
deformation and layer displacement type of stacking 
faults and predicted the observable diffraction effects. 
From a comparison of the theoretically predicted 
diffraction effects with those actually observed on 
diffraction patterns taken from SiC crystals under- 
going 3C to 6H transformation, it is shown that the 
transformation takes place through a non-random 
insertion of layer displacement faults and not by a 
deformation mechanism. Further, it is also shown that 
the observed diffraction characteristics of SiC crystals 
undergoing 3C to 6H transformation cannot be 
explained in terms of non-random twinning. 

2. Principle of analysis 
Following Warren [22], the general expression for 
diffracted intensity from a faulted cubic close-packed 
crystal can be written as: 

+oo 
/(h3) = ~k 2 ~ (exp (ic~,,)) exp (2rcimh3/3) (1) 

m= co 

Here hi, h2, h3 are continuous variables along a*, b* 
and c* reciprocal vectors corresponding to a three-layer 
hexagonal unit cell. ~2 is a function of hi and h 2 and 
vanishes except when hi = H and h2 = K, H and K 
being hexagonal indices with integer values, q~m is the 
phase difference across a pair of layers, m layers apart 
and is given by 

q5 m = ( 2 ~ / 3 ) ( H -  X)qm, (2) 

qm being the displacement of the m th layer with respect 
to the origin layer in units of the stacking off-set vector 
which is of the type (a/3)(1 T 0 0). The three possible 
types of pairs of layers, namely A-A, B-B, C-C; A-B, 
B-C, C-A and A-C, C-B, B-A, lead to three corre- 
sponding values 0, + 1 and - 1  for qm- In a perfect 
crystal, free from stacking faults, the phase difference 
of the mth layer with respect to the origin layer is 
always fixed but for a faulted crystal it can take either 
of the following three values, 0, (2z/3)(H K) and 
( -2n/3)(H-K) depending on the number, distribution 
and geometry of faults up to the ruth layer. The 
average value (exp (igPm)) may be evaluated if the 
relative probabilities of these three phase angles can be 
expressed in terms of stacking fault probabilities. The 
evaluation of the diffracted intensity, therefore, reduces 
to the determination of 

Jm = (exp (iq~m)) (3) 

for reflections wi th / - /K  v~ 0 (rood 3) and is based on 
the statistical specification of the distribution of stack- 
ing faults. It is evident from Equation 2 that the 
reflections with H-K = 0(rood 3) are not affected 
by faulting since q5 m = 2nqm and (exp ( i O m ) )  = 1. 
Reflections which are affected by faulting exhibit one 
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Figure 1 Variation of the calculated diffracted intensity 
along c* in reciprocal space for a 3C crystal containing 
a random distribution of deformation faults. 

or more of the tbllowing effects: (i) change in the inte- 
grated intensity; (ii) shift in peak positions; (iii) 
broadening of reflections; and (iv) peak asymmetry. 
From a measurement of these observable diffraction 
effects, it is possible to evaluate the type and degree of 
faulting which is generally characteristic of the mech- 
anism of transformation. 

3. Diffracted intensity for the 
deformation mechanism 

Paterson [23] has developed the theory of diffraction 
from 3C crystals containing a random distribution of 
deformation faults. The intensity distribution along c* 
at various h3 values for such a randomly faulted 3C 
crystal is shown in Fig. 1. It is evident from the figure 
that as the fault probability approaches unity no new 
structure is formed; instead a twin configuration is 
generated. For the 3C to 6H transformation to take 
place by the insertion of deformation faults it is essen- 
tial to impose a restriction on the distribution of 
faults. This is because when deformation faults bring 
about the transformation in accordance with the 
scheme depicted in Section 1, their distribution no 
longer remains entirely random. We shall take into 
consideration such a non-random distribution of 
deformation faults in developing the theory of diffrac- 
tion from crystals undergoing the 3C to 6H transform- 
ation by the deformation mechanism. To do this we 
shall first obtain the so-called characteristic equation 

and the boundary conditions using the approach 
developed by Prasad and Lele [24] under the usual 
assumptions [19-21]. 

In a perfect 3C structure (ABC . . . .  ) each layer is 
shifted from its preceding one through a stacking 
offset vector of the type (a/3)~1 0 T 0). We shall desig- 
nate all such layers with subscript 0. When deformation 
faults are inserted in the course of the 3C to 6H 
transformation, five more types of layers need to be 
distinguished. In the schematic representation shown 
in Section 1, the first deformation fault has occurred 
after fourth layer. Introduction of a single deformation 
fault in a 3C crystal leads to the formation of an 
hh-contact which is known [25] to be an unstable 
configuration at the 3C to 6H transformation tempera- 
ture in SiC and therefore must be followed by another 
deformation fault after the fifth layer. Accordingly the 
fifth layer is distinct from the 0-type layer and is 
assigned the subscript 1. After the fifth layer a fault 
may or may not occur. If a pair of faults is followed 
by another fault, the 3C to 614 transformation requires 
the absence of faults on the next three layers, i.e. they 
have to remain in their original orientations. So we 
designate the sixth, seventh, eighth and ninth layers by 
subscripts 2, 3, 4 and 5, respectively. The layer follow- 
ing the sixth layer of type 2 without the occurrence 
of a fault also has subscript 4. This is because its 
environment can be seen to be identical with that of 
the eighth layer. Assuming c~ to be the probability of 
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occurrence of a deformation fault involved in the 
3C to 6H transformation, we can now construct the 
probability trees given below for transitions from 
(m - 1)th to mth layers for each of the six types of 
layers discussed above: 

( m -  l)th transition mth 
layer probability layer 

1 - =  
B0 

A o - -  = 
C1 

1 
Cl B2 

1 - ~  
C4 

B 2 - -  = 
A3 

1 
A3 B4 

1 
B4 C5 

1 
C5 A0 

Using the above probability trees, one obtains the 
following characteristic equation and boundary con- 
ditions (see Appendix 1 for mathematical details): 

0 6 -- o~(1 -- ~)Os _ co=(1 - ~)0 -- ~2 = 0 (4) 

J o  

J1 = 

J2 = 

j ,  = 

& = 

1 

(--2= + ~2c02 + c.o)/[(1 + 002 + 2~] 

(~ + c02 + =2c0)/[( 1 + =)2 + 2~] 

(1 - c02/[(1 + =)2 + 2=] (5)  

[(1 - c0(c0 - 2c~o0 + c0]/[(1 + c02 + 2~] 

{(1 - =)[~o2(1 - 3=) + 2 ~ ( ( o  - c0] 

-~2(1 + 2~)}/[(1 + =)2 +2=] 

The diffracted intensity from 3C crystals undergoing 
transformation to the 6H structure by deformation 
mechanism can now be expressed in terms of  the fault 
probability (=) by substituting the coefficients (a) of 
the characteristic equation and the boundary con- 
ditions given by Equations 4 and 5, in the following 
expression (see Appendix 2 for mathematical details): 

C 
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3,  
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A 3 C - n o r m o [  r e f l e c t i o n s  

7 3 C - t w i n  r e f l e c t i o n s  
| Common r e f l e c t i o n s  

Figure 2 Reciprocal space representation of the a*-c* section of 
diffraction patterns for 3C (normal and twin) and 6H structures. 
The indices for 3C and 6H both are defined with respect to a 
three-layer hexagonal unit cell of the 3C structure. 

a careful examination of Fig. 3 which depicts the cal- 
culated intensity distributions. The transformation 
commences with the appearance of a continuous diffuse 
streak joining the main 3C reflections. Right from the 
start, there is considerable asymmetric broadening of  
the 3C reflection which also exhibits some peak shift. 
As the transformation proceeds further, the asymmetric 
tail on one side of this cubic reflection gives rise to a 
broad-diffuse reflection which gradually approaches 
the normal L = 2a-(mod 3) position of the 6H struc- 
ture with continuously increasing peak intensity and 
decreasing broadening. At the same time, new peaks 
start emerging from the streak near L = }(rood 3) 
and 1 (rood 3) positions, which are characteristic of 6H 

I f  5 r--1 ~, ~, a6-,Jr ,exp [2gi(6 -- r)h3/3] - ao 
I(h3) = ~f12 1 r=l ,=0 

5 + 6 
~, a, exp [2~irh3/3] 
r=0 

+ {complex conjugate) J (6) 

Using Equation 6, we have calculated the variation 
in diffracted intensity along e* for various deformation 
fault probabilities (=). Since we are using a three-layer 
hexagonal unit cell of  the 3C structure in our calcu- 
lations, the 1 0.1,  1 0 .2 ,  1 0 .3 ,  1 0 . 4  and 1 0 .5  reflec- 
tions of  6H will index as 1 0.�89 1 0 .1 ,  1 0 -3,3 1 0 .2  and 
1 0. s with respect to the smaller cell as depicted in 
Fig. 2. 

The following diffraction effects become evident on 

structure. The former peak shows negative shift with 
small non-monotonic variation in position whereas 
latter one shows positive shift with monotonic vari- 
ation. On further transformation, the 3C reflection 
becomes asymmetric on the other side of the peak and 
from the tail of  which another reflection corresponding 
to L = s (mod 3) of 6H emerges. During the entire 
course of  transformation, there are marked changes in 
the peak intensity as well as in the peak position of the 
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Figure 3 Variation of  the calculated diffracted intensity along e* in 
reciprocal space for a 3C crystal undergoing t ransformation to a 6H 
structure through a non- random insertion o f  deformation faults. 

cubic reflection both of which fail to show a monotonic 
variation. 

4 .  D i f f r a c t e d  i n t e n s i t y  f o r  l a y e r  
d i s p l a c e m e n t  m e c h a n i s m  

Sato [26] has considered the theory of diffraction from 
a 3C crystal containing random distribution of layer 

displacement faults. The calculated intensity distri- 
butions along e* for various layer displacement fault 
probabilities (/?) are depicted in Fig. 4. The dashed 
vertical line represents a 6-peak whose integrated 
intensity varies as (1 - /?)/(1 + 2/?) 2. The continuous 
curve along h 3 represents the diffuse streak due to 
faulting. It is evident from the figure that the randomly 
distributed faults can generate only the twin of the 
starting structure, as the fault probability approaches 
unity. For 3(2 to 6H transformation to take place by 
the insertion of layer displacement faults, it is essential 
to take into account the non-random distribution of 
such faults, as illustrated schematically in Section 1. 

As explained in the previous section, all layers 
in a perfect 3C structure may be assigned a subscript 
0. When the layer displacement faults occur non- 
randomly in the course of the 3C to 6H transform- 
ation, five more types of layer should be distinguished. 
In the scheme showing 3C to 6H transformation in 
Section 1, a layer displacement fault has occurred after 
the fourth layer. If/? is the probability of occurrence 
of a layer displacement fault in the 3C structure, the 
probability of arriving at the fifth layer with a fault 
will be/?. Since both fifth and sixth layers have under- 
gone displacement simultaneously to avoid any viol- 
ation of the stacking rule, the probability of arriving 
at the sixth layer from the faulted fifth layer will be 1. 
The fifth layer is thus of different type as compared to 
layers with subscript 0. We shall assign a subscript 1 
to all such layers. Once the fifth and sixth layers have 
undergone transposition, no layer displacement fault 
can occur after sixth, seventh, eighth and ninth layers 
if the 3C to 6H transformation has to take place. In 
this respect, these layers are different not only from 0 
type layers but also from 1-type layers. We shall assign 
subscripts 2, 3, 4 and 5 to such layers. 

The following probability trees can now be 
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constructed: 

( m -  1)th transition mth 
layer probability layer 

1 - f l  
r B0 

A0 ! i /3 C~ 

1 
C~ B2 

1 
B2 A3 

1 
A3 B4 

1 
B4 Cs 

1 
Cs A0 

With the help of these trees and following the math- 
ematical approach outlined in Appendix 1 for defor- 
mation faults, one can derive expressions for the 
characteristic equation and boundary conditions for 
the present case. These are given below: 

~6 __ (1 -- /3)coff 5 -- /3 = 0 (7) 

= 1 J0 

J~ = [co(1 - /3) -3/3]/(1 + 5/3) 

J2 = [~o2( 1 -- fl)]/(1 + 5/3) 
(8) 

J3 = (1 - fl)/(1 + 5/3) 
J4 = [(D(1 --  /3)]/(1 + 5fl) 

Js = [0)2( 1 -- /3) --3/32]/( 1 + 5/3) 

Since Q = co is a root of Equation 7, we shall use the 
following expression for the diffracted intensity in this 
case (see Appendix 2 for details): 

+so 
I(h3) = ~t2C0 Z c~ 4 - 1 ) / 3 ]  

m= --oo 

exhibit large shifts from their normal positions. The 
peaks near L = �89 1 and 2 a (mod 3) show positive shifts 
whereas the peak at L = 2s (mod 3) shows negative 
shift. As the concentration of faults becomes high, the 
peaks become more intense and less broadened and 
at the same time approach their regular positions 
i.e. positions characteristic of an ordered 6H struc- 
ture. Simultaneously, the diffuse streak joining the 
various peaks becomes less intense. The reflection with 
L = 2 (rood 3) of the 3C structure continues to remain 
a &peak and is shown by a dashed vertical line in 
Fig. 5. This reflection remains sharp and unshifted 
throughout the transformation. However, the inte- 
grated intensity of the 6-peak, which is proportional 
to Co, takes the values 0.64, 0.41, 0.33 and 0.28 for 
/3 = 0.1, 0.3, 0.5 and 0.7. 

5. Comparison with experimental 
observations 

Jagodzinski [3] has performed a detailed X-ray dif- 
fraction study of  SiC crystals undergoing 3C to 6H 
transformation at temperatures above 1600~ His 
observations have been independently confirmed by 
Krishna and Marshall [4]. Since the transformation 
is sluggish, it is possible to arrest it by simple air- 
quenching and study the intermediate states of trans- 
formation by X-ray diffraction at room temperature. 
We reproduce Fig. 6 from an article by Krishna and 
Pandey [13] depicting the 1 0. L reciprocal lattice row 
of a twinned 3C-crystal as recorded on 15 ~ e-axis 
oscillation photographs after annealing the 3C crystal 
for several hours at successively higher temperatures, 
ranging from 1800 to 2000 ~ C. Following observations 
can be made on the basis of this figure: 

1. the transformation commences with a statistical 
insertion of faults causing the appearance of  diffuse 
streak joining the 1 0. L reflections; 

2. throughout the transformation, l 0. 4- 1 and 

I f r--1 ~, ~ ds-sKr_s exp [2~zih3(5 - r)/3] - doKo 
(1 Co) -1- r=l s=O 

dr exp [2~irh3/3] 
r=0 

+ complex conjugate (9) 

Here, 

Co = [(1 + 2//)/(1 + 5fl)] 2 (10) 

while K and d are new sets of boundary conditions 
and coefficients of the characteristic equation which 
are free from the effect of  the root  wth unit modulus. 
These quantities can easily be derived from Equations 
7 and 8 in the manner explained in Appendix 2. 

Using Equation 9 we have calculated diffracted 
intensities for various fault probabilities (/3) and the 
results so obtained are depicted in Fig. 5. It is evident 
from the figure that the transformation commences 
with the appearance of  a continuous diffuse streak 
joining the main 3C reflections. The 6H peaks on the 
diffuse streak start developing even with a small con- 
centration (fl = 0.1) of faults but are very broad and 

1 0. 4- 2 reflections of 3C remain sharp although their 
intensities change; 

3. very diffuse spots characteristic of a 6H structure 
start developing n e a r  h 3 = L = �89 3) and 
h 3 = L = 23- (rood 3) positions. As the transformation 
proceeds further, these spots sharpen and become 
more intense; 

4. the final 6H structure is invariably disordered as 
revealed by the presence of diffuse streaks joining the 
main 3C reflections. 

These observations are in agreement with those 
reported by Jagodzinski [3]. Fig. 7 depicts intensity 
distribution along the 2 0. L reciprocal lattice row of  
a partially transformed 3C-SiC crystal, as recorded by 
Jagodzinski [3]. It is evident from Figs. 6 and 7, that 

1 6 5 9  
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Figure 5 Variation of  the calculated dif- 
fracted intensity along c* in reciprocal 
space for a 3C crystal undergoing trans- 
formation to a 6H structure through a non- 

random insertion of  layer displacement 
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the cubic reflections remain sharp throughout the 
transformation and are sandwiched between diffuse 
reflections characteristic of the 6H structure. Jepps 
and Page [12] have also reported the occurrence of 
sharp and diffuse reflections on electron diffraction 

patterns recorded from partially transformed 3C crys- 
tallites. The occurrence of sharp cubic reflections 
sandwiched between diffuse 6H reflections has been 
reported by Ohta et al. [27] and Pandey [28] in as-grown 
6H-SiC crystals obtained from vapour phase and 

Figure 6 The 1 0. L reciprocal lattice row of  a 3C-SiC crystal as recorded on a c-axis oscillation photograph taken after successive annealing 
runs. Reproduced from [13]. (a) At room temperature; (b) at 1800 ~ C after annealing for 16 h; (c) at 2000 ~ C after annealing for another  16 h; 

(d) at 2000~ after annealing for another  16 h. 
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silicon melt, respectively. It is likely that these 6H 
crystals have resulted from 3C crystals by solid state 
transformation. 

The facts that 1 0. + 1 and 1 0. + 2 reflections of  
3C are not broadened and that diffuse elongated spots 
develop near h3 = L = �89 (rood 3) and 3 (rood 3), are in 
agreement with the theoretical predictions of Section 4 
for the layer displacement mechanism suggesting that 
the 3C to 6H transformation occurs by this mechanism. 
As pointed out in Section 3 in deformation mechanism, 
one would initially expect considerable asymmetric 
broadening of  3C reflections which with further inser- 
tion of  faults will give rise to new broad reflections. 
Besides, the 3C reflections exhibit some shift in their 
peak positions. These predictions are contrary to the 
experimental observations of  Jagodzinski [3] and 
Krishna and Marshall [4] described above. 

6. E f f e c t  o f  g r o w t h  f a u l t s  z 

The calculations in Sections 3 and 4 pertain to untwin- oi v 
ned crystals whereas the experimental observations t 
described in the previous section are for twinned 3C- | 6 
SiC crystals. A twin boundary in an as-grown 3C-SiC ._~ 
crystal is actually a growth fault. In the following, we == 2 
shall consider the influence of  a small concentration of  ,, o III 
such growth faults on the diffraction effects predicted 

t_  

in Sections 3 and 4. Subsequently, we shall also consider .~ 6 
. 0  

the situation where the 3C to 6H transformation is ?, z, 
taking place by non-random insertion of growth faults 

= 2 
only. Our calculations show that non-random twin- 
ning by growth faulting cannot explain the observed .~ ~ 
diffraction effects described in the previous section. ~,, 

obtain the intensity distribution for the twin orientation 
by using the relation 

I(HK. h3) . . . .  1 = I(HK. h3)twin 

Assuming p = q = 1/2, the total diffracted intensity 
from a twinned-3C crystal, which has been faulted 
subsequently, can then be obtained by adding the 
intensities at each point along h 3 for the normal and 
twin structures. Figs. 8 and 9 depict the results so 

12 

10 

8 

6 ~ -  

-c~=o.3 ) 

6.1. Small  c o n c e n t r a t i o n  of  g r o w t h  faul t s  lz 
A small concentration of  growth faults implies that 10 
the normal- and twin-3C regions are quite thick. Since 8 
no streaking is observed in Fig. 6a for the twinned 6 
3C-SiC crystal at room temperature, it is safe to z, 
assume that the thickness of individual normal-3C 2 
(ABC-type) and twin-3C (ACB-type) regions is more o z c~= 01 
than 100 nm which is the coherence length for X-rays. 0 
Under such a situation, Cowley and Au [29] have 
shown that the diffracted intensity by a twinned crys- 
tal will be proportional to plF112 + qlF212, where Fl 
and F2 are the structure amplitudes for the normal and 
twin counterparts, while p and q are the corresponding 
volume fractions for the two orientations. One can 

J 
t / 2  

t 

I 

J 
I 

1 3 1 2  2 5 /2  

t t t t 
6H 3CI6H 6H 3C/6H 6H 

h 3 ,, 

Figure 8 Variation of the calculated diffracted intensity along c* in 
reciprocal space for a twinned 3C-SiC crystal undergoing trans- 
formation to a 6H structure through a non-random insertion of 
deformation faults. 
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obtained for a twinned 3C crystal with non-random 
distribution, required for the 3C to 6H transform- 
ation, of deformation and layer displacement fault, 
respectively. 

The fact that the intensities of reflections at 
L = +_ 1 and _+ 2 (rood 3) positions are almost equal 
in Fig. 6a, suggests that p ~ q ~ 1/2, and we can use 
the curves given in Figs. 8 and 9 for interpreting the 
experimental observations. It is evident from Fig. 9 
that there are diffuse peaks superimposed on the 
infinitely sharp &peaks. This will, however, not lead to 
any qualitative as well as quantitative change in the 
characteristics of g-peaks, the existence of which is 
sufficient to prove the involvement of layer displace- 
ment faults in twinned 3C-SiC crystals undergoing 
transformation to the 6H structure. It may be noted 
that the broad peak at L = ~ (mod 3) in Fig. 9 exhibits 
two maxima surrounding a minima. It may not be 
usually possible to detect such a feature due to the fact 
that the observed X-ray diffraction patterns correspond 
to the convolution of the true diffracted intensity 
distribution with the intensity distributions due to 
instrumental and physical factors. Thus the presence 
of  a small concentration of  growth faults does not 
affect the conclusion arrived at in the previous section 
that the 3C to 6H transformation in SiC takes place by 
the layer displacement mechanism. 

6.2. 3C to 6H transformation by repeated 
twinning through a non-random 
insertion of growth faults 

In order to generate a 6H structure in a 3C crystal, 
growth faults should occur at every three layer 

/2 

6H 

Figure 9 Variation of the calculated diffracted intensity 
along c* in reciprocal space for a twinned 3C-SiC 
crystal undergoing transformation to a 6H structure 
through a non-random insertion of layer displacement 
fauits. 

spacings, as depicted below: 

Initial 3C structure:  . . .  A B C A B C A B C . . .  

I n t e rmed ia t e  structure:  . . . A  B C A C B A C B . . .  

Final  s t ruc ture  (6H): . . .  A B C A C B A B C . . .  

As explained in Section 3 and 4, in a perfect 3C crystal 
there exists only one type of layer to which we assigned 
a subscript 0. In the above scheme a growth fault has 
been introduced after the fourth layer causing all 
layers after the fourth layer to be in twin-orientation. 
Further, for a 6H structure to result, no fault should 
occur after the fifth and sixth layers. For  this reason, 
we distinguish the fifth and sixth layers from the 
seventh layer, although all the three are in twin 
orientation. There is no restriction on the occurrence 
of a growth fault after the seventh layer. Let us assign 
subscripts 1, 2 and 3 to layers numbered as fifth, sixth 
and seventh, respectively. After the seventh layer a 
fault may or may not occur. The seventh layer has 
been labelled as 3-type because it is different from the 
0-type layer in the sense that it has twin environment 
with respect to the succeeding layer. If a fault occurs 
after the seventh layer, it cannot occur after the eighth 
and ninth layers if the 6H structure is to be formed. The 
eighth and ninth layers are different from fifth and sixth 
layers in terms of their environment, and hence are 
given subscripts 4 and 5. Thus in a crystal undergoing 
3C to 6H transformation by non-random insertion of 
growth faults, we not only have 0- and 3-type layers 
corresponding to the normal and twin counterparts but 
also 1, 2, 4 and 5-type layers. The following are the 
probability trees for (m-1)th to m th layer transitions for 
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this situation, with ? being the probability of non- 
random occurrence of a growth fault: 

( m -  1)th transition 
layer probability 

1 - 7  
r 

Ao [ 7 

l 
Ci 

1 
B2 

l - 7  

A 3 - -  7 

mth 
layer 

Bo 

Cl 

B2 

A3 

C3 

B4 

C5 
1 

B4 

1 
C5 A0 

Using these probability trees, the following charac- 
teristic equation and boundary conditions have been 
obtained in a manner similar to that presented in 
Appendix 1 for deformation faults: 

06 + 05( 1 - 7) + 04( 1 - 7) 2 -  72 = 0 (11)  

J0 = 1 

J1 = - 1/2 

Jz = --(1 -- ?)/2(1 + 27) 
(12) 

-/3 = 2(1 - ?)/2(l + 27) 

J4 = --(1 -- 7)/2(1 + 27) 

J5 = - (1  - 47 + 672)/2(1 + 27) 

Substituting the coefficients of characteristic 
equation and the boundary conditions given above in 
Equation 6 one can calculate the intensity distribution 
along h3 for various growth fault probabilities. Fig. 10 
depicts the results of such a calculation. It is evident 
from this figure that the 3C to 6H transformation by 
non-random insertion of growth faults will commence 
with broadening of the 3C reflections at L = + 1 
(mod 3) positions. This is contrary to the experiment- 
ally observed fact that the 3C reflections remain sharp 
throughout the course of transformation. 

7 .  D i s c u s s i o n  
It is evident from the foregoing analyses that the 
observed diffraction effects for SiC crystals undergoing 
3C to 6H transformation can be explained in terms of 
non-random insertion of layer displacement faults 
only. Jagodzinski [3] has attempted to explain the 
occurrence of alternate sharp and diffuse diffraction 
maxima on X-ray diffraction patterns in terms of a 
model assuming a preference for twins to occur in 
units of three layers. However, the mathematical 
treatment employed by Jagodzinski does not explicitly 
take into account the mechanism responsible for the 
occurrence of twins in units of three layers. His cal- 
culations actually are aimed at simulating the desired 
diffraction effects without going into the mechanistic 
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Figure 10 Variation of  the calculated diffracted intensity along c* in 
reciprocal space for a 3C-SiC crystal undergoing transformation to 
a 6H structure through a non- random insertion o f  growth faults. 

aspect of the 3C to 6H transformation. Our approach, 
on the other hand, takes into account the mechanistic 
aspects of the 3C to 6H transformation in terms of the 
geometrical nature of stacking faults involved in the 
transformation under consideration. 

As pointed out in Section 1, Ogbuji et al. [15] have 
proposed that the growth of 6H-SiC nuclei takes place 
by repeated nucleation and propagation of Shockley 
partials which are known to border deformation 
faults. However, our analysis shows that the defor- 
mation mechanism proposed by Ogbuji et al. cannot 
account for the observed diffraction effects unless the 
three Shockley partials required for the transformation 
recur as a unit process. The recurrence of three par- 
tials as part of a unit process seems to be a farfetched 
possibility and in addition is not supported by any 
experimental evidence. Even if one accepts this as a 
possibility, then following the arguments of Ogbuji 
et al. [15] no strain contrast should be visible at the 
3C/6H interface since the sum of the Burgers vectors of 
these partials will tend to be zero in order to minimize 
the interfacial energy. Under such a situation the 
observation of Shockley partials at the transformation 
interfaces using g.b  criterion by Ogbuji et al. suggests 
that Shockley partials are nucleated successively and 
not by a unit process. 

The present work thus brings home a contentious 
point that notwithstanding the potential of TEM 
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technique in revealing the nature of localized defects, 
the features observed in isolated micrographs and the 
conclusions based thereupon may be misleading in as 
much as these do not provide a self-consistent expla- 
nation for the observed diffraction effects as well. On 
the other hand, except for the geometrical nature and 
distribution of  the faults involved in the 3C to 6H 
transformation, it is impossible to infer anything about 
the nucleation of the fault or the nature of  the 3C/6H 
incoherent interface on the basis of  the diffraction 
approach presented in this work. In this regard, a 
complementary diffraction and transmission electron 
microscopic investigation is called for to elucidate the 
finer details of  the mechanism of 3C to 6H trans- 
formation in SiC in a self-consistent manner. 
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Appendix 1 
Derivation of characteristic equation for the 

deformation mechanism 
The problem of  calculating diffracted intensity from a 
faulted close-packed crystal reduces to the evaluation 
of (exp (i~)m)) defined in Equation 1. The function 
(exp (ibm)) can be expressed as [24]: 

(exp (i~)m)) = Z P(m) exp (i~)m) (A1) 

where P(m) is the probability of  obtaining the phase 
difference 4~,, and the summation is over the three 
possible values of  q~m, namely 0, (2rc/3) and - (2rc/3) 
corresponding to pairs of  types A-A, B-B, C-C;  A-B, 
B-C,  C-A and A-C,  B-A, C-B, respectively. The 
probability P(m, j) of  finding the mth layer with 
subscript j (where j = 0, 1, 2, 3, 4, 5) is same as the 
probability of finding a phase difference (q5 m)i between 
the mth layer with subscript j and any other type of  
layer at the origin. The probabilities, P(m, j ) ,  can be 
directly written down with the help of probability trees 
given in Section 3, which are given below: 

P(m, O) = (1 - cOP(m - 1,0) 

+ P(m - 1, 5) (A2) 

e(m, 1) = c~P(rn - 1, 0) (A3) 

P(m, 2) = P(m - 1, 1) (A4) 

P(m, 3) = c~P(m - 1, 2) (A5) 

P(m, 4) = (1 -- a)e(m--  1,2) 

+ P(m -- 1, 3) (A6) 

P(m, 5) = P(m - 1,4) (A7) 

Let us define a function J(m, j)  such that 

J(m,j) = (exp(iqSm)j) 

= ~ P(m, j) exp (i~bm)j (A8) 

J(m,j) can be related to P(m, j) with the help of  the 
following relation for exp (iq~m): 

exp (item) = exp (iqSm_l) exp ( +  i~b0) (A9) 

where q50 = 2rc/3 is the phase difference between the 

(m - 1)th and mth layers and takes the ( + )  or ( - )  
sign according as these layers are in A-B, B-C,  C-A 
or A-C,  C-B, B-A configurations. Multiplying 
Equation (A2) by exp (i~bm) and using Equations A8 
and A9, we obtain: 

J(m,O) = (1 - ~ ) ~ P ( m  - 1,0) exp(iqS.~_l) o 

x exp (iqSo) + ~. P(m - 1, 5) 

x exp (i(am_l)5 exp (iqSo) 

Writing exp (i~bo)= co and exp ( - i q S o ) =  e) 2, the 
above equation reduces to: 

J(m, O) = (1 - a)e)J(m - 1,0) + c~J(m - 1,5) 

(A10) 

In a similar way, one can obtain J(m, j) for other 
values of j from Equations (A3) to (A7). These are 
given below: 

J(m, 1) = ~o)2j(m - 1, 0) (Al l )  

J(m, 2) = co2j(m - 1, 1) (A12) 

J(rn, 3) = c~o)2j(m - 1, 2) (A13) 

J(m, 4) = coJ(m - 1, 3) 

+ (1 - ~)coJ(m - 1,2) (A14) 

J(m, 5) = o)J(m - 1, 4) (A15) 

On trying a solution of  the following form for the 
system of difference Equation (A10) to (A15): 

J(m,j) = CjO", rn >~ O, (A16) 

where Cj and 0 are functions of ~, one gets the desired 
characteristic equation: 

Q6_ co(1 - ~)O 5 -  ~(1 - c~)co o -  c~ 2 = 0 (A17) 

Evaluation of boundary conditions 
Boundary conditions are evaluated in two steps: one 
first obtains the probability, wj, of finding a layer with 
subscript j on passing through an arbitrary region of  
the crystal. Then considering all possible sequences 
starting with layers of each type, i.e., 0, 1, 2, 3, 4 and 5 
at the origin, one gets (exp (ibm)j). From these two 
quantities the desired boundary conditions can easily be 
obtained since 

J(m) = (exp (ibm)) = ~ Wj (exp (iq~m)j) (m 18) 

The following relations among w can be written with 
the help of the probability trees, shown in Section 3 for 
deformation faults: 

w 0 = (1 - ~)w0 + w5 (A19) 

W 1 = W 2 = W 4 = W 5 = ~ W  0 (A20) 

w3 = ~w2 (A21) 

w0 + wl + w2 + w3 + w4 + w5 = 1 (A22) 

Solving the above equations one gets 

1 
w~ = (1 + ~)2 + 2c~ (A23) 

wl = w2 = w4 = w5 = (1 + e)2 + 2~ (A24) 
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~2 

W3 = (1 "J- 002 -~- 2c~ (A25) 

Using the above three equations in Equation (A 18) we 
get the desired boundary conditions, given by Equation 
5 in the main text. 

Appendix 2 
General expression for diffracted intensity 

from a faulted crystal 
Let us consider a characteristic equation of the follow- 
ing form: 

an~ n + a, 10" 1 + . . .  + a0 = 0 (A26) 

If 0~(J = 1 to n) are the roots of this equation, then 
following Equation A16 we have 

Jm = (exp (i(Om)) = ~ CjQ~ m >1 0 (A27) 
j= l  

Substituting from Equation A27 into Equation 1 and 
after performing the summations over m, we obtain 

I(h3) = ~ [Cj -t- CjQj/{exp (27zih3/3) - ~ j }  
j=l  

+ Cjoj{exp ( -2rc ih3/3)  - @] (A28) 

As shown by Lele [30], the constant Cj can be 
evaluated from a knowledge of the boundary con- 
ditions, the coefficients of the characteristic equation 
and only the corresponding root Oj: 

= [ J o e ; - '  + (Joa ._ l  + Jl)O; -z + . . .  

+ ( J 0 a 2  + Jla3 + " ' "  + Jn 3an-] + J.-2)ej  

+ (Joal  + J, a2 + " ' "  + J ._2a._ ,  + J. i)1 

x [no; -1 + (n -- 1)a._le; -2 + - . .  

+ 2a2~ j + al] -1 (A29) 

Knowing both, ~ and 0j, one can thus obtain the 
desired expression for the diffracted intensity as a 
function of the fault probabilities. 

However, it is not always possible to have analytic 
solutions of Equation A26. In such situations, by 
carrying out the summations in Equation A28, and 
replacing the elementary symmetric functions of ej by 
aj and the expressions involving Cj by arm, Gevers [31] 
(see also Holloway [32]) has obtained an expression 
for the diffracted intensity that involves only aj and Jm 
and thus does not necessitate a solution of the charac- 
teristic equation and the evaluation of the constants 
Cj. Following Holloway [32], the diffracted intensity 
can thus be expressed as 

I(h3) = 02 

two parts according as lejl < 1 and lejl = 1, we have 

n - p  +oo 

I ( h 3 )  = 02  Z 2 
j = l  rn= - oo 

CjQ} mk exp (2~rimh3/3) 

-boo 

+02 Z 
j = n - p + l  m = - o o  

exp ( -  2hi ImlXj/3) 

x exp (27timh3/3) (A31) 

where the roots with 10jl = 1 have been expressed in 
the complex form, 0j = exp (-2~iXj/3), where Xj is 
an integer or proper fraction. Cj is usually real for 
roots with unit modulus. Denoting the second part of 
Equation A31 by Is(h3), we obtain after simplifications: 

+oo  

I,(h3) = 02 ~ Cj. cos (2~m/3) (h  3 - Xj) 
j = n - p + l  m=- -oo  

(A32) 

Thus each of the p roots with unit modulus gives rise 
to an infinitely sharp peak at h a = )(j, 

j =  ( n - p +  1) ton .  
Since Equation A30 is not valid for roots with unit 

modulus, elemenatry symmetric functions of only those 
roots for which [r < 1 need to be obtained. This can 
be done by dividing Equation A26 by p factors of the 
form (0 -- 0/), [P/] = l , j  = (n -- p + 1) to n, giving 

en-p + dn_p l on-p I + . . .  + die  + do = 0 

(A33) 

Thus a should be replaced by d in the analytic 
solution for the diffracted intenstity obtained by 
Gevers [31] and Holloway [32]. In a similar fashion, the 
J,, given by Equation A27, which correspond to a sum 
over all the roots, should also be replaced by K,, which 
have a sum over the roots with leil < 1 only. Thus 

n--p 

K m =  ~ Cj0j .ml (A34) 
j= l  

Utilizing Equation A27 we can rewrite Equation A34 
a s  

Km = J m -  i CJQ} ml (A35) 
j = n - - p + l  

Thus once again, one has a self-consistent set cons- 
isting of the characteristic Equation A33 and the 
boundary conditions A35 which no longer has the 
effects of any roots with unit modulus and thus can be 
used for calculating the diffracted intensity using the 
method of Gevers [31] and Holloway [32]. 

~ a . . . . .  exp[27rih3(n - 0/3] - a0 
S=0 - -  - -  - -  

r~0ar exp [2~zirh3/3] 

+ {complex conjugate} (A30) 

I fp  of the n roots have unit modulus, i.e. IQjl = 1, 
the summations over m in Equation 1 can be performed 
only for (n - p) roots. Therefore, separating the series 
in Equation 1 after substitution of Equation A27, into 
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